## MATH PLACEMENT TEST FOR BUSINESS SAMPLE TEST #4

1. Perform the following operation and simplify:

$$6(4x^3 + x^2 - 1) - 7(5x^3 - 2x + 2)$$

- A.  $-11x^3 + 6x^2 + 14x + 20$
- B. C.  $-11x^3 + 6x^2 14x 20$
- C.  $-11x^3 + 6x^2 + 14x 20$
- D. D.  $-11x^3 + x^2 + 14x 20$
- E. None of the above
- 2. Perform the following operation and simplify:

$$\frac{x^{2} + 7x + 10}{x^{2} + 8x + 15} \cdot \frac{x^{2} + 3x}{x^{2} - 3x - 10}$$
A.  $\frac{x^{2} + 3x}{x - 5}$ 
B.  $\frac{x}{x^{2} + 8x + 15}$ 
C.  $\frac{1}{x - 5}$ 
D.  $\frac{x}{x - 5}$ 

- E. None of the above
- 3. Perform the following operation and simplify:

$$\frac{-1}{x} + \frac{5}{x^4 + 4} + \frac{4}{x^5 + 4x}$$
A.  $\frac{5 + x^3}{x^4 + 4}$ 
B.  $\frac{5 - x^3}{x^4 + 4}$ 
C.  $\frac{x^3 - 5}{x^4 + 4}$ 
D.  $\frac{5 + x^3}{x(x^4 + 4)}$ 
E. None of the above

4. Factor completely the following Expression:

 $10x^2 + 25x + 6x + 15$ 

- A. (5x 3)(2x 5)
- B. (10x 3)(x 5)
- C. (5x+3)(2x+5)
- D. (10x + 3)(x + 5)
- E. None of the above
- 5. Perform the following operation assuming that *x* and *y* are positive real numbers. Write the answer using positive exponents only:

$$\left(\frac{xy^{-2}}{x^{-4}y}\right)^{-3}$$
A.  $\frac{x^{6}}{y^{12}}$ 
B.  $\frac{y^{9}}{x^{15}}$ 
C.  $\frac{x^{9}}{y^{15}}$ 
D.  $\frac{y^{6}}{x^{12}}$ 

- E. None of the above
- 6. Write the following expression in radical form:

$$(16x)^{\frac{3}{5}}$$

- A.  $\sqrt[5]{16x^3}$
- B.  $\sqrt[3]{(16x)^5}$
- C.  $\sqrt[5]{(16x)^3}$
- D.  $8\sqrt[5]{x^3}$
- E. None of the above

7. Perform the following operation and simplify:

$$\sqrt[3]{16x} - 4\sqrt[3]{2x} - 2\sqrt[3]{54x}$$
  
A.  $-8\sqrt[3]{2x}$   
B.  $-8\sqrt[3]{4x}$   
C.  $9\sqrt[3]{2x}$   
D.  $\sqrt[3]{16x} - 10\sqrt[3]{2x}$   
E. None of the above

8. Simplify the following expression:

$$\frac{\sqrt{x} - \frac{1}{6\sqrt{x}}}{\sqrt{x}}$$
A. 
$$\frac{6\sqrt{x} - 1}{6x}$$
B. 
$$\frac{6x - 1}{6x}$$
C. 
$$\frac{6x + 1}{6x}$$
D. 
$$\frac{6x - 1}{6}$$

- E. None of the above
- 9. Solve the linear equation:

$$-\frac{2x}{5} + \frac{1}{2} = -\frac{x}{10} + \frac{1}{4}$$
  
A.  $x = \frac{1}{11}$   
B.  $\frac{5}{6}$   
C.  $\frac{1}{2}$   
D. -30

10. Solve the following inequality, write your answer in Interval notation

$$-3(4x - 1) < -15x + 9$$
  
A.  $(-\infty, 2)$   
B.  $(-\infty, -15]$   
C.  $(-15, \infty)$   
D.  $(2, \infty)$   
E. None of the above

11. Solve the following inequality and write your answer in Interval notation:

$$\left|\frac{5-4x}{6}\right| \le 2$$
A.  $\left(-\infty, -\frac{7}{4}\right) \cup \left[\frac{17}{4}, \infty\right)$ 
B.  $\left(-\infty, -\frac{7}{4}\right] \cup \left(\frac{17}{4}, \infty\right)$ 
C.  $\left[-\frac{7}{4}, \frac{17}{4}\right]$ 

D. No solution

3x(x+1) = 1

- E. None of the above
- 12. Solve the following quadratic equation:

A. 
$$x = \frac{1}{2}$$
  
B.  $x = \frac{-3 + \sqrt{21}}{6}$ ,  $x = \frac{-3 - \sqrt{21}}{6}$   
C.  $x = \frac{3 + \sqrt{21}}{6}$ ,  $x = \frac{3 - \sqrt{21}}{6}$   
D.  $x = 0$ ,  $x = \frac{1}{3}$ 

13. Solve the following quadratic Inequality, write your answer in interval notation and graph it:





- 14. The fixed costs of a company producing calculators are \$25,000 and it costs \$20 to produce one calculator. How many calculators were produced if the costs is \$39,000?
  - A. 1950 calculators
  - B. 1250 calculators
  - C. 700 calculators
  - D. 1825 calculators
  - E. None of the above
- 15. Determine whether the equation  $x = y^2 + 15$  defines y as a function of x
  - A. Yes B. No
- 16. Find the domain of the following function:

$$f(x) = \frac{3x^2 - 6x}{\sqrt{6 - x}}$$

- A. All real numbers x such that  $x \neq 6$
- B. All real numbers x such that  $x \neq 2, x \neq 0$  and  $x \neq 6$
- C. All real numbers x such that  $x \le 6$
- D. All real numbers x such that x < 6
- E. None of above

17. If 
$$f(x) = 5x^2 + x + 1$$
, find

$$\frac{f(2+h) - f(2)}{h}$$

- A. 0
- B.  $5h^2 + 21h$
- C. 21 + 5h
- D. 5*h*
- E. None of the above

18. Write the following quadratic equation in the form  $y = a(x - h)^2 + k$ :

$$f(x) = x^2 + 10x + 18$$

- A.  $(x+5)^2 7$
- B.  $(x-5)^2 7$
- C.  $(x+5)^2 + 7$
- D.  $(x-5)^2 + 7$
- E. None of the above
- 19. Determine whether the following function has a maximum or a minimum and find its value:

$$f(x) = -x^2 - 18x - 90$$

- A. Minimum, –9
- B. Maximum, 9
- C. Minimum, 0
- D. Maximum, –9
- E. None of the above

20. Given the following Graph, Find the coordinates of the vertex and the intercepts:



- A. vertex (3, -1); x intercepts 4, 2; y-intercept 8
- B. vertex (3, -1); x –intercepts 8; y-intercepts 2, 4
- C. vertex (-1, 3); x intercepts 4, 2; y-intercept 8
- D. vertex (2, 4); x –intercepts 3; y-intercept –1
- E. None of the above
- 21. The fixed costs of a company producing pants are 50,000. If the selling price of the company is 90 per pant, what is the revenue functions R(x) coming from the sale of x pants?
  - A. R(x) = 50000 + 9x
  - $B. \quad R(x) = 9x$
  - C. R(x) = 50000x 9
  - D. R(x) = 9x 50000
  - E. None of the above
- 22. The revenue from the sale of x thousands units from a certain product is modeled by the function  $R(x) = -2x^2 + 42x + 7$ . If the cost of producing x thousands units is modeled by C(x) = 30x + 23, how many items should be produced and sold for the company to beak even?
  - A. x = 400 units
  - B. x = 2, x = 4 units
  - C. x = 2000, x = 4000 units
  - D. x = 0, x = 4 units
  - E. None of the above

23. Find the slope and the y -intercept of the line given by the equation

6x - 2y = -4A. m = 6; y -intercept (0, -4)B. m = 3; y -intercept (0, 2)C. m = 3; y -intercept (2, 0)D. m = -2; y -intercept (0, 2)E. None of the above

24. Write the equation of the line passing through the point (-2, 5) and perpendicular to the line given by the equation 5x + 10y - 8 = 0

A.  $y = \frac{1}{2}x + 6$ B. y = -2x + 1C. y = 2x + 9D.  $y = -\frac{1}{2}x + 4$ E. None of the above

- 25. Write the equation of the vertical line passing through the point (-5, 6)
  - A. y = 6B. x = -5C. y = -5x + 6D. x = 6E. None of the above
- 26. Write the following in logarithmic form (do not solve):

$$10^{3x+1} = 5$$

A. 
$$3x + 1 = log(5)$$

B. 
$$3x + 1 = \ln(5)$$

C. 
$$3x + 1 = \log(10)$$

- D.  $3x + 1 = \ln(10)$
- E. None of the above
- 27. Given that *x*, *y*, *z* and *b* are positive numbers, write the following expression in condensed form (as a single log)

$$log_4(x) - log_4(y) + 5log_4(z)$$

A. 
$$log_4(x - y + z^5)$$

B. 
$$log_4(x-y+5z)$$

C. 
$$log_4\left(\frac{x+5z}{y}\right)$$

D. 
$$log_4\left(\frac{xz^5}{y}\right)$$

28. Find the domain and graph the following function:

$$f(x) = \log_{\frac{1}{3}} x$$

A. Domain  $(0, \infty)$ 

B. Domain =  $(-\infty, \infty)$ 





C. Domain  $(-\infty, \infty)$ 



D. Domain =  $(0, \infty)$ 



## 29. Solve the following exponential equation:

$$2^{12-2x} = 64$$
  
A.  $x = 3$   
B.  $x = 6$   
C.  $x = 32$   
D.  $x = -3$   
E. None of the above

30. Solve the following logarithmic equation:

 $4\ln(e^{2x}) = 64$ A. x = 16B. x = 8C. x = 32D. x = 128E. None of the above

## MATH PLACEMENT TEST FOR BUSINESS ANSWERS KEY SAMPLE TEST #4

| Question # | Answer | Question # | Answer |
|------------|--------|------------|--------|
| 1          | С      | 16         | D      |
| 2          | D      | 17         | С      |
| 3          | В      | 18         | Α      |
| 4          | С      | 19         | D      |
| 5          | В      | 20         | Α      |
| 6          | С      | 21         | В      |
| 7          | Α      | 22         | С      |
| 8          | В      | 23         | В      |
| 9          | В      | 24         | С      |
| 10         | Α      | 25         | В      |
| 11         | С      | 26         | Α      |
| 12         | В      | 27         | D      |
| 13         | В      | 28         | Α      |
| 14         | С      | 29         | Α      |
| 15         | В      | 30         | В      |